Differential Equations Study Sheet

Matthew Chesnes
It’s all about the Mathematics!
Kenyon College

Exam date: May 11, 2000
6:30 P.M.
1 First Order Differential Equations

- Differential equations can be used to explain and predict new facts for about everything that changes continuously.

$$\frac{d^2x}{dt^2} + a \frac{dx}{dt} + kx = 0.$$

- t is the independent variable, x is the dependent variable, a and k are parameters.

- The order of a differential equation is the highest derivative in the equation.

- A differential equation is linear if it is linear in parameters such that the coefficients on each derivative of y term is a function of the independent variable (t).

- Solutions: Explicit \rightarrow Written as a function of the independent variable. Implicit \rightarrow Written as a function of both y and t. (defines one or more explicit solutions.

1.1 Population Model

- Model: $\frac{dP}{dt} = kP$.

- Equilibrium solution occurs when $\frac{dP}{dt} = 0$.

- Solution: $P(t) = Ae^{kt}$.

- If $k > 0$, then $\lim_{t \to \infty} P(t) = \infty$. If $k < 0$, then $\lim_{t \to \infty} P(t) = 0$.

- Redefine model so it doesn’t blow up to infinity.

$$\frac{dP}{dt} = kP(1 - \frac{P}{N}).$$

- N is the carrying capacity of the population.

1.2 Separation of Variables Technique

- $\frac{dy}{dt} = g(t)h(y)$.

- $\frac{1}{h(y)}dy = g(t)dt$.

- Integrate both sides and solve for y.

- You might lose the solution $h(y) = 0$.
1.3 Mixing Problems

- \(\frac{dQ}{dt} = \text{Rate In} - \text{Rate Out}. \)
- Consider a tank that initially contains 50 gallons of pure water. A salt solution containing 2 pounds of salt per gallon of water is poured into the tank at a rate of 3 gal/min. The solution leaves the tank also at 3 gal/min.
- Therefore Input = \(2 \text{(lb/gal)} \times 3 \text{(gal/min)}.\)
- Output = \(? \text{(lbs/gal)} \times 3 \text{(gal/min)}.\)
- Salt in Tank = \(\frac{Q(t)}{50}.\)
- Therefore output of salt = \(\frac{Q(t)}{50} \text{(lbs/gal)} \times 3 \text{(gal/min)}.\)
- \(\frac{dQ}{dt} = \text{Rate In} - \text{Rate Out} = 2 \text{ lbs/gal} \times 3 \text{gal/min} - \frac{Q(t)}{50} \text{(lbs/gal)} \times 3 \text{(gal/min)}.\)
- 6 lbs/min - \(\frac{3Q(t)}{50}\) lbs/min.
- Solve via separation of Variables.

1.4 Existance and Uniqueness

- Given \(\frac{dy}{dt} = f(t, y). \) If \(f \) is continuous on some interval, then there exists at least one solution on that interval.
- If both \(f(t, y) \) and \(\frac{\partial}{\partial y} f(t, y) \) are continuous on some interval then an initial value problem on that interval is guaranteed to have exactly one Unique solution.

1.5 Phase Lines

- Takes all the information from a slope fields and captures it in a single vertical line.
- Draw a vertical line, label the equilibrium points, determine if the slope of \(y \) is positive or negative between each equilibrium and label up or down arrows.

1.6 Classifying Equilibria and the Linearization Theorem

- Source: solutions tend away from an equilibrium \(\rightarrow f'(y_o) > 0. \)
- Sink: solutions tend toward an equilibrium \(\rightarrow f'(y_o) < 0. \)
- Node: Neither a source or a sink \(\rightarrow f'(y_o) = 0 \) or DNE.
1.7 Bifurcations

- Bifurcations occur at parameters where the equilibrium profile changes.
- Draw phase lines (y) for several values of a.

1.8 Linear Differential Equations and Integrating Factors

- Properties of Linear DE: If y_p and y_h are both solutions to a differential equation, (particular and homogeneous), then $y_p + y_h$ is also a solution.

- Using the integrating factor to solve linear differential equations such that $\frac{dy}{dt} + P(t)y = f(t)$.
 - The integrating factor is therefore $e^{\int P(t) dt}$.
 - Multiply both sides by the integrating factor.
 - $e^{\int P(t) dt} \frac{dy}{dt} + e^{\int P(t) dt} P(t)y = e^{\int P(t) dt} f(t)$.
 - then via chain rule ...
 - $\frac{d}{dt} \{ e^{\int P(t) dt} y \} = e^{\int P(t) dt} f(t)$.
 - Then integrate to find solution.

1.9 Integration by Parts

\[\int udv = uv - \int vdu. \]
2 Systems

- \(\frac{dx}{dt} = ax - bxy, \frac{dy}{dt} = -cy + dxy. \)
- Equilibrium occurs when both differential equations are equal to zero.
- \(a \) and \(c \) are growth effects and \(b \) and \(d \) are interaction effects.
- To verify that \(x(t), y(t) \) is a solution to a system, take the derivative of each and compare them to the original differential equations with \(x \) and \(y \) plugged in.
- Converting a second order differential equation, \(\frac{d^2y}{dt^2} = f. \) Let \(v = \frac{dy}{dt}. \) Thus \(dv = \frac{d^2y}{dt}. \)

2.1 Vector Notation

- A system of the form \(\frac{dx}{dt} = ax + bxy \) and \(\frac{dy}{dt} = cy + exy \) can be written in vector notation.

\[
\frac{d}{dt} \mathbf{P}(t) = \begin{bmatrix} \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} = \begin{bmatrix} ax + bxy \\ cy + exy \end{bmatrix}.
\] (1)

2.2 Decoupled System

- Completely decoupled: \(\frac{dx}{dt} = f(x), \frac{dy}{dt} = g(y). \)
- Partially decoupled: \(\frac{dx}{dt} = f(x), \frac{dy}{dt} = g(x, y). \)
3 Systems II

- Matrix form.
- Homogeneous = $\frac{d}{dt}X = AX$.
- Non-homogeneous = $\frac{d}{dt}X = AX + F$.
- Linearity Principal
 - Consider $\frac{d}{dt}X = AX$, where
 \[
 A = \begin{bmatrix}
 a & b \\
 c & d
 \end{bmatrix}. \tag{2}
 \]
 - If $X_1(t)$ and $X_2(t)$ are solutions, then $k_1X_1(t) + k_2X_2(t)$ is also a solution provided $X_1(t)$ and $X_2(t)$ are linearly independent.
 - Theorem: If A is a matrix with $\det A$ not equal to zero, then the only equilibrium point for the system $\frac{d}{dt}X = AX$ is,
 \[
 \begin{bmatrix}
 0 \\
 0
 \end{bmatrix}. \tag{3}
 \]

3.1 Straightline Solutions, Eigencool Eigenvectors and Eigenvalues

- A straightline solution to the system $\frac{d}{dt}X = AX$ exists provided that,
 \[
 A \begin{bmatrix} x \\ y \end{bmatrix} = \lambda \begin{bmatrix} x \\ y \end{bmatrix}. \tag{4}
 \]
- To determine λ, compute the $\det[(A - \lambda I)] =
 \[
 \det \begin{bmatrix} a - \lambda & b \\ c & e - \lambda \end{bmatrix} = (a - \lambda)(e - \lambda) - bc = 0. \tag{5}
 \]
 - This expands to the characteristic polynomial =
 \[
 \lambda^2 - (a - d)\lambda + ae - bc = 0.
 \]
- Solving the characteristic polynomial provides us with the eigenvalues of A.
3.2 Stability
Consider a linear 2 dimensional system with two nonzero, real, distinct eigenvalues, \(\lambda_1 \) and \(\lambda_2 \).

- If both eigenvalues are positive then the origin is a source (unstable).
- If both eigenvalues are negative then the origin is a sink (stable).
- If the eigenvalues have different signs, then the origin is a saddle (unstable).

3.3 Complex Eigenvalues

- Euler’s Formula: \(e^{a+ib} = e^a e^{ib} = e^a \cos(b) + ie^a \sin(b) \).
- Given real and complex parts of a solution, the two parts can be treated as separate independent solutions and used in the linearization theorem to determine the general solution.
- Stability: consider a linear two dimensional system with complex eigenvalues \(\lambda_1 = a + ib \) and \(\lambda_2 = a - ib \).
 - If \(a \) is negative then solution spiral towards the origin (spiral sink).
 - If \(a \) is positive then the solutions spiral away from the origin (spiral source).
 - If \(a = 0 \) the solutions are periodic closed paths (neutral centers).

3.4 Repeated Eigenvalues

- Given the system, \(\frac{d}{dt}X = AX \) with one repeated eigenvalue, \(\lambda_1 \).
- If \(V_1 \) is an eigenvector, then \(X_1(t) = e^{\lambda t}V_1 \) is a straight line solution.
- Another solution is of the form \(X_2(t) = e^{\lambda t}(tV_1 + V_2) \).
- Where \(V_1 = (A - \lambda I)V_2 \).
- \(X_1 \) and \(X_2 \) will be independent and the general solution is formed in the usual manner.

3.5 Zero as an Eigenvalue

- If zero is an eigenvector, nothing changes but the form of the general solution is now
 \(X(t) = k_1 V_1 + k_2 e^{\lambda_2 t}V_2 \).
4 Second Order Differential Equations

• Form: \(\frac{d^2y}{dt^2} + p(t) \frac{dy}{dt} = q(t)y = f(t) \).

• Homogeneous if \(f(t) = 0 \).

• given solutions \(y_1 \) and \(y_2 \) to the 2nd order differential equation, you must check the Wronskian if both solutions are from real roots of the characteristic.

\[
W = \det \begin{bmatrix} y_1 & y_2 \\ y_1' & y_2' \end{bmatrix}.
\] (6)

• If \(W \) is equal to 0 anywhere on the interval of consideration, then \(y_1 \) and \(y_2 \) are not linearly independent.

• General solution given \(y_1 \) and \(y_2 \) is found as usual by the linearization theorem.

• Characteristic polynomial of a 2nd order with constant coefficients: \(as^2 + bs + c = 0 \).

• Solutions of the form \(y(t) = e^{st} \).

\[
s = -\frac{b}{2a} + / - \frac{\sqrt{b^2 - 4ac}}{2a}.
\]

− if \(b^2 - 4ac > 0 \), then two distinct real roots.

− if \(b^2 - 4ac < 0 \), then complex roots.

− \(b^2 - 4ac = 0 \), then repeated real roots.

4.1 Two real distinct Roots

• Two real roots, \(s_1 \) and \(s_2 \).

• General solution = \(y(t) = k_1e^{s_1t} + k_2e^{s_2t} \).

4.2 Complex Roots

• Complex Roots, \(s_1 = p + iq \) and \(s_2 = p - iq \).

• General solution = \(y(t) = k_1e^{pt}\cos(qt) + k_2e^{pt}\sin(Qt) \).

4.3 Repeated Roots

• Repeated Root, \(s_1 \).

• General solution = \(y(t) = k_1e^{-\frac{b}{2a}t} + k_2te^{-\frac{b}{a^2}t} \).
4.4 Nonhomogeneous with constant coefficients

- General solution = \(y(t) = y_h + y_p \).
- Polynomial \(f(t) \).
 - Look for particular solution of the form \(y_p = A t^n + B t^{n-1} + C t^{n-2} + \ldots + D t + E \).
- Exponential \(f(t) \).
 - Look for particular solution of the form \(y_p = A e^{pt} \).
- Sine or Cosine \(f(t) \).
 - Look for particular solution of the form \(y_p = A \sin(at) + B \cos(at) \).
- Combination \(f(t) \).
 - \(f(t) = P_n(t) e^{at} \), \(y_p = (A t^n + B t^{n-1} + C t^{n-2} + \ldots + D t + E) e^{at} \).
 - \(f(t) = P_n(t) \sin(at) \) or \(P_n(t) \cos(at) \), \(y_p = (A_1 t^n + A_2 t^{n-1} + A_3 t^{n-2} + \ldots + A_4 t + A_5) \cos(at) + (B_1 t^n + B_2 t^{n-1} + B_3 t^{n-2} + \ldots + B_4 t + B_5) \sin(at) \).
 - \(f(t) = e^{at} \sin(bt) \) or \(e^{at} \cos(bt) \), \(y_p = A e^{at} \cos(bt) + B e^{at} \sin(bt) \).
 - \(f(t) = P_n(t) e^{at} \sin(bt) \) or \(P_n(t) e^{at} \cos(bt) \), \(y_p = (A_1 t^n + A_2 t^{n-1} + A_3 t^{n-2} + \ldots + A_4 t + A_5) e^{at} \cos(bt) + (B_1 t^n + B_2 t^{n-1} + B_3 t^{n-2} + \ldots + B_4 t + B_5) e^{at} \sin(bt) \).
- Superposition \(f(t) \).
 - If \(f(t) \) is the sum of \(m \) terms of the forms previously described.
 - \(y_p = y_{p1} + y_{p2} + y_{p3} + \ldots + y_{pm} \).
5 LaPlace Transformations

• Definition \(L\{f(t)\} = \int_0^\infty e^{-st} f(t) dt = \lim_{T \to \infty} \int_0^T e^{-st} f(t) dt. \)

• ONLY PROVIDED THAT THE INTEGRAL CONVERGES!!! MUST BE OF EXPONENTIAL ORDER!!!

• \(L\{f(t)\} = F(s). \)

• \(L\{1\} = \frac{1}{s}. \)

• \(L\{t\} = \frac{1}{s^2}. \)

• \(L\{e^{at}\} = \frac{1}{s-a}. \)

• \(L\{\sin(\omega t)\} = \frac{\omega}{s^2 + \omega^2}. \)

• \(L\{\cos(\omega t)\} = \frac{s}{s^2 + \omega^2}. \)

• Linear: \(L\{\alpha f(t) + \beta g(t)\} = \alpha F(s) + \beta G(s). \)

5.1 Inverse Laplace Transforms

• Linear: \(L^{-1}\{\alpha F(s) + \beta G(s)\} = \alpha f(t) + \beta g(t). \)

5.2 Transform of a derivative

• \(L\{f'(t)\} = sL(f(t)) - f(0). \)

• \(L\{f''(t)\} = s^2 L(f(t)) - sf(0) - f'(0). \)